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Motivation

Why Keyword Spotting?

Motivation 1: Humans detect keywords in speech. Once important
keywords are detected, decoding the entire speech can become trivial.

Motivation 2: Applications like (indoor automation, human
machine interface etc.)

Motivation 3: Searching for one word or a phrase over 100 hrs of data
(e.g.: from You-tube) just like searching a text document for words!

Motivation 4: Numerous Cyber-Physical System applications, e.g.
telemedicine, smart security etc.
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Maintain 61× 10 counters C counting the number of event occurrences for each section and each realization of greasy &
counter T accumulating the total time of all the training instances

The lambda matrix Λ = C
T/10

This is the solution of Λ obtained my MLE estimation

Figure: Posteriorgram and phonetic events for an instance of greasy
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Figure: Word duration model for keyword greasy
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Discriminative Training of PPM

Discriminative Training

Change in Objective Function

Original ML optimization problem:
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K̂x is the number of keyword training samples for the keyword x

n
(Kx)
p,d

is the count of phoneme p in the dth segment of the training sample number Kx for keyword x

wc is the set of competing words for the keyword w
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Discriminative Training of PPM

Discriminative Training

Solving the Maximization Problem

From First Order Condition:
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The second order conditions depend strongly on the data, we have
to put in more control
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Discriminative Training of PPM

Discriminative Training

Modified Objective Function:
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γp,d is the stabilizing factor required for the optimal solution to satisfy the second order optimality condition

A suitable value of γp,d is selected for each phoneme p and segment d for each keyword such that the solution eq. (6)
is the optimal solution

The stabilizing factor γp,d can be interpreted as a boost in the number of phonetic event count n
(Kw)
p,d

by an extra

γp,d number of phonetic events
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Discriminative Training of PPM

Combination of PPM and DPPM

PPM-DPPM Detector Combination

DPPM suppresses false alarms very well, however, DPPM also
misses some true keyword locations.

We propose a combination of the detector functions obtained

from PPM and DPPM (d
(PPM)
w (t) and d

(DPPM)
w (t) respectively) for

keyword w to utilize the merits of PPM & DPPM

We obtain d
(PPM−DPPM)
w as :

d(PPM−DPPM)
w (t) =

{
d
(PPM)
w (t) for d

(DPPM)
w (t) ≥ αw

d
(DPPM)
w (t) for d

(DPPM)
w (t) < αw

(7)

The value of αw is chosen according to the best performance
achieved on a development set for each keyword w.
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Discriminative Training of PPM

Experimental Setup

Experimental Setup

14 keywords chosen from TIMIT (dark, suit, greasy, wash, water, year, carry, oily, always, about, through, enough,
every, children) and the Boston University Radio Speech corpora (boston, city, committee, government, hundred,
massachusetts, official, percent, president, program, public, thousand, year, yesterday)

TIMIT:

1 4620 sentences in the TIMIT training set for training PPM as well as DPPM.

2 Test and development set of 740 sentences consisting of all the sentences of 24 speakers from TIMIT core test
set (24× 10 = 240 sentences) as well as all the speakers in the development set used by Kaldi TIMIT recipe
(50× 10 = 500 sentences). Half of these sentences is used for development and the remaining half is used for
testing purposes.

BURS:

1 All sentences spoken by the speakers F1A, F2B, M1B, M2B, M3B for training

2 The development set and the test set consist of the sentences spoken by the speakers F3A and M4B respectively

Performance Measures:

1 AROC = 100×A
f

, where A is the area under the ROC curve upto a false alarm rate of f

2 Figure of Merit (FOM) score - average of detection probabilities at 1, 2, . . . 10 false alarms/keyword/hour.
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DPPM Supresses False Alarms
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Discriminative Training of PPM

Results of DPPM

Comparison of PPM, DPPM and PPM-DPPM

TIMIT BURS
FOM AROC FOM AROC

Keyword PPM DPPM PPM-DPPM PPM DPPM PPM-DPPM Keyword PPM DPPM PPM-DPPM PPM DPPM PPM-DPPM

about 60 0 60 98.54 81.53 98.93 boston 68.96 63.75 68.96 92.63 89.91 92.63
always 50 60 50 94.35 70.69 94.35 city 7.86 11.43 7.86 90.98 77.68 90.98
carry 96.58 96.84 96.58 95.65 88.54 95.68 committee 61.67 65 61.67 97.57 96.74 97.57

children 100 66.67 100 98.64 65.63 98.64 government 35.41 16.49 35.41 77.27 64.91 77.27
dark 97.11 97.11 97.11 94.76 83 94.82 hundred 54.58 41.88 54.58 86.7 71.62 85.65

enough 100 100 100 100 100 100 massachusetts 80.26 80.26 80.26 97.54 97.54 97.54
every 63.33 83.33 63.33 92.09 91.85 92.09 official 44.8 57.6 57.4 61.75 90.51 90.31

greasy 97.3 97.3 97.3 94.63 77.29 94.63 percent 56.67 56.25 56.67 95.89 95.95 95.89
oily 95.41 94.05 95.41 97.34 93.45 97.34 president 46.88 3.75 46.88 90.15 51.52 90.15
suit 94.86 93.24 94.86 96.45 86.61 96.48 program 67.61 53.89 67.61 94.15 88.26 94.09

through 33.33 86.67 33.33 96.82 90.2 96.97 public 14 9.2 14 74.79 52.74 74.79
wash 97.3 96.76 97.3 95.45 77.6 95.45 thousand 43.89 40.56 43.89 81.45 87.19 81.45
water 96.84 97.11 96.84 95.63 82.31 95.64 year 77.83 77.83 77.83 96.12 96.12 96.12
year 94.1 94.62 94.87 89.92 84.08 90.44 yesterday 33.18 45 33.18 85.06 88.64 88.56

Average 84.01 83.12 84.07 95.73 83.77 95.82 Average 49.54 44.49 50.44 87.29 82.09 89.49
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Unsupervised Online Training of Point Process Models

Proposed Learning Algorithm

Initialization

Initialize a PPM with parameters θ
(Kstart)
w learnt from Kstart

training samples of a keyword

Estimtae an initial keyword detection threshold γ(Kstart)

Initial learning factor α(Kstart) is taken to be 1, assigning full
confidence on the Kstart initial samples

Kstart = 10
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Unsupervised Online Training of Point Process Models

Proposed Learning Algorithm

New Location and Duration Hypothesis
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γ(k − 1) be the determined threshold after the (k − 1)th

keyword detection

kth sample is detected in the region [τ
(k)
1 , τ

(k)
2 ] where

dw(t) > γ(k − 1)

End location t(k) of the kth keyword is determined as

t
(k)

= arg max

τ
(k)
1 <t<τ

(k)
2

dw(t).

Also, let the
βk = max

τ
(k)
1 <t<τ

(k)
2

dw(t).

Duration T (k) of the kth keyword occurring at time t(k)

T
(k)

= arg max
n∈{−1,0,1,2}

P
(
Oµw+nσw (t

(k)
)
∣∣∣µw + nσw, θ

(k−1)
w

)
× β(µw + nσw|w)

(8)

where P (OT (t)) is the event/observation at time t for a
duration T .
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Proposed Learning Algorithm

Updating γ(k) After kth Detection
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After kth keyword detection, obtain the set

M
(k)

(w) = {β
k̂
|1 ≤ k̂ ≤ k} (9)

Update γ(k) after kth keyword detection

γ(k) =

{
0.1×median(M(k)(w)) for k = Kstart

0.5×median(M(k)(w)) for k > Kstart
(10)

θ
(k)
w = {λ(k)

p,d
=(α(k))λ

(k−1)
p,d

+ (1− α(k))λ̂p,d

| p ∈ P, 1 ≤ d ≤ D}
(11)

α(k) =

∑k−1

k̂=1
T (k̂)∑k

k̂=1
T (k̂)

. (12)
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Parameter set before kth detection

θ
(k−1)
w =

{
λ
(k−1)
p,d

∣∣∣ p ∈ P, 1 ≤ d ≤ D} (13)

Obtain the parameters of the kth sample

θ̂w =

{
λ̂p,d =

np,dD

T (k)

∣∣∣∣ p ∈ P, 1 ≤ d ≤ D}} (14)

Update the model as

θ
(k)
w = {λ(k)

p,d
=(α(k))λ

(k−1)
p,d

+ (1− α(k))λ̂p,d

| p ∈ P, 1 ≤ d ≤ D}
(15)

Update learning factor α(k) as

α(k) =

∑k−1

k̂=1
T (k̂)∑k

k̂=1
T (k̂)
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Unsupervised Online Training of Point Process Models

Experimental Setup

Experimental Setup

Use eight keywords obtained from the TIMIT [?] SA1 and SA2 sentences, namely greasy, water, dark, wash, carry, oily,
suit, year

TIMIT training set consisting of 4620 sentences is used for training as well as the online learning corpus

Test set has 740 sentences comprising of all the sentences of 24 speakers from TIMIT core test set (24x10=240
sentences) as well as all sentences of 50 speakers from the development set used by the Kaldi TIMIT recipe (50x10=500
sentences)

The performance measure is the percentage area under the ROC curve given by PAROC = 100×A
f

where A is the

are under the ROC curve upto a false alarm rate of f , then
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Posteriorgram Filtering based Keyword Spotting

Matched Filter

Training

From N training examples of keyword w obtain a set of

posteriorgrams X (w) = {X(w)
i |i = 1, 2, . . . N}

The posteriogram X
(w)
i has a dimension p×K(w)

i (p = number of
phonemes [typically 48 or 61] and K(w) = number of frames)

Normalize the posteriorgrams to a common dimension p× K̂(w)

where K̂(w) ≥ max{K(w)
1 ,K

(w)
2 , . . .K

(w)
N } and hence obtain a

normalized set of posteriorgrams X (w)
norm = {X̂(w)

i |i = 1, 2, . . . N}.
Average matched Filter M (w) for w is obtained as

M (w) =
1

|X (w)
norm|

∑
X∈X (w)

norm

X (17)
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Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Training (1/2)

Maximize a suitable objective function with respect to the filter parameters that assigns a higher level to the keyword
locations and a lower value to a set of competing keyword locations.

Objective function to train a p× K̂ dimension filter M(w)

O(M
(w)

) =

 1

|L(w)|

∑
wL∈L

(w)

 p∑
x=1

K̂∑
y=1

X
(wL)

[p×K̂]
[x, y]M

(w)
[x, y]− V

2

(18)

+
1

|L(w)
c |

∑
ŵL∈L

(w)
c

 p∑
x=1

K̂∑
y=1

X
(ŵL)

[p×K̂]
[x, y]M

(w)
[x, y]

2

+
∑
x

∑
y

(M
(w)

[x, y])
2


Convex Optimization Problem :

M̂
(w)

= arg min
M(w)

O(M
(w)

) (19)

X
wL
[p×K̂]

is the posteriorgram of the wL-th keyword example from a set of L(w) keyword examples, p is the number

of phonemes. Similarly, X
ŵL
[p×K̂]

is the posteriorgram of the ŵL-th competing keyword example from the set L
(w)
c .

K̂ is the normalized filter dimension and V is the parameter which sets to a high level
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ŵL
[p×K̂]
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Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Training (2/2)

Taking the derivative of the objective function O with respect to all filter coefficients results in a set of p× K̂ linear
equations in p× K̂ unknowns.

p∑
a=1

K̂∑
b=1

ζ(a, b, α, β)M
(w)

[a, b] = γ(α, β) for 1 ≤ α ≤ p and 1 ≤ β ≤ K̂ (20)

ζ(a, b, α, β) =
1

|L(w)|

∑
wL∈L

(w)

X
(wL)

[p×K̂]
[a, b]X

(wL)

[p×K̂]
[α, β] (21)

+
1

|L(w)
c |

∑
ŵL∈L

(w)
c

X
(ŵL)

[p×K̂]
[a, b]X

(ŵL)

[p×K̂]
[α, β] + δ(a− α, b− β)

γ(α, β) = V
∑

wL∈L
(w)

X
(wL)

[p×K̂]
[α, β] (22)

δ(a− α, b− β) =

{
1, if a = α and b = β

0 else
(23)
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(ŵL)

[p×K̂]
[α, β] + δ(a− α, b− β)

γ(α, β) = V
∑

wL∈L
(w)

X
(wL)

[p×K̂]
[α, β] (22)

δ(a− α, b− β) =

{
1, if a = α and b = β

0 else
(23)

SPIRE LAB, IISc, Bangalore 42



Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Training (2/2)

Taking the derivative of the objective function O with respect to all filter coefficients results in a set of p× K̂ linear
equations in p× K̂ unknowns.

p∑
a=1

K̂∑
b=1

ζ(a, b, α, β)M
(w)

[a, b] = γ(α, β) for 1 ≤ α ≤ p and 1 ≤ β ≤ K̂ (20)

ζ(a, b, α, β) =
1

|L(w)|

∑
wL∈L

(w)

X
(wL)

[p×K̂]
[a, b]X

(wL)

[p×K̂]
[α, β] (21)

+
1

|L(w)
c |

∑
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Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Obtaining L
(w)
c

Train a set of non-discriminative filters for each keyword w by minimizing the objective function

M̂
(w)
no−D = arg min

M(w)

 1

|L(w)|

∑
wL∈L

(w)

 p∑
x=1

K̂∑
y=1

X
(wL)

[p×K̂]
[x, y]M

(w)
[x, y]− V

2

(24)

+
∑
x

∑
y

(M
(w)

[x, y])
2



M
(w)
no−D is used to search for the keywords w in a development set dev to obtain a set of keywords and false alarm

locations

The threshold is varied as a percentage of the maximum value of the correct detector plots to generate lists of

competing words L̂
(w)
c

The list L̂
(w)
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Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Decoding

Decoding using any posteriorgram filter is performed in the same manner

Sample the word duration model N (k|µ, σ) at four points, S = {µ + nσ|n = −1, 0, 1, 2} to obtain a set of
sampled values L = {N (µ + nσ|µ, σ)|n = −1, 0, 1, 2}
The detector function:

dw(t) = max
n∈{−1,0,1,2}

 p∑
i=1

t∑
j=t−µ−nσ+1

Xtest[i][j]M
(w)
[p×(µ+nσ)]

[i][j − t + µ + nσ]N (µ + nσ|µ, σ)


(25)

where Xtest is the posteriorgram of a given test sentence and M
(w)
[p×(µ+nσ)]

is the matched filter obtained for

keyword w, normalized from (p× K̂(w)) to (p× (µ + nσ)) and t is the frame number
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Posteriorgram Filtering based Keyword Spotting

Level Discriminative Optimal (LDO) Filter

Experimental Setup and Results
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The algorithm is tested using 14 keyword from the TIMIT database

Figure shows the average Receiver Operating Curve (ROC) for 14 keywords. for PPM, LDO and matched filtering.

Algorithm Average Area Under ROC
PPM 0.992990

MF-KWS 0.988951
LDO-KWS 0.994549
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Adaptive Matched Filtering Based Fully Unsupervised KWS
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Adaptive Matched Filtering Based Fully Unsupervised KWS

The Problem Statement

Given only a handful (≈ 5) of cut-out snippets of the acoustic sample
(keyword/phrase/sound) to search for and a small un-annotated dataset
consisting of only speech files spoken by a set of speakers, design a KWS
algorithm with the limited resources.
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Adaptive Matched Filtering Based Fully Unsupervised KWS

Baseline System1

Segmental Dynamic Time Warping (sDTW) based KWS using
Gaussian Posteriorgram features in a completely unsupervised
paradigm of KWS exactly in the same setting as described in the
posed problem statement

Local sDTW Conditions:

1 Adjustment window condition: The DTW path restricted to a fat
diagonal from the starting point such that the difference in x and y
coordinates ix and iy do not exceed a parameter R, i.e., |ix − iy| ≤ R

2 Step length of start co-ordinates: A R frame step jump based DTW
computation.
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Adaptive Matched Filtering Based Fully Unsupervised KWS

The Proposed Adaptive Matched Filtering Algorithm

Initialization: Initial matched filter M
(w)
init for w obtained with 5 samples of w and Gaussian posteriorgram (GP)

Consider matched filter M
(w)
k

after detection of k keywords and peak(k) be the set of maximum values of the
detector output at the keyword locations

First level verification: Decode through test sentences using the filter M
(w)
k

and use a very low threshold

0.2×max(peak(k)) to get a preliminary location of keyword. If a probable location of the keyword is obtained, the
end and duration of the keyword is hypothesized as for Online Learning of PPM

Second level verification: Average DTW distance Davg is computed between the detected keyword and the five
keyword templates provided. A threshold Dthresh = 2× the inter DTW score between the five known templates is
set and the first level hypothesized keywords having Davg < Dthresh is assumed to be surely a keyword location.

GPnew be new keyword GP feature, then matched filter M
(w)
k+1

is obtained as

M
(w)
k+1

=
k

k + 1
M

(w)
k

+
1

k + 1
GPnew (26)
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Adaptive Matched Filtering Based Fully Unsupervised KWS

Experimental Setup

8 keywords are chosen from the TIMIT database SA1 and SA2
sentences, namely greasy, water, dark, wash, carry, oily, suit, year

Out of 4620 training sentences, 5 sentences containing a keyword are
used to train the initial model MFinit. The remaining 4615 sentences
are used as the adaptation corpus for updating the model using the
proposed adaptation method

Performance quantified by the P@N measure which is the number
of correct keyword detections (P ) out of the highest scoring N
number of detections, where N is the number of ground truth
keywords present in the test corpus
The GMM for generating the Gaussian posteriorgram features is
trained using 462 random sentences from the TIMIT train corpus with
5× 61 mixture components.
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Adaptive Matched Filtering Based Fully Unsupervised KWS

Results

Keyword MFinit MFadapt GPbase
dark 0.8889 0.5205 0.5088
suit 0.6667 0.3631 0.5774

greasy 0.5298 0.2917 0.6012
wash 0.8631 0.7917 0.7976
water 0.8059 0.5059 0.6000
carry 0.7929 0.5148 0.6391
oily 0.6190 0.5179 0.4940
year 0.8701 0.7797 0.8305

Average 0.7545 0.5356 0.6310

The average P@N performance for the 8 keywords improved from 0.5356 to 0.7545

The initial average P@N for the baseline system GPbase with 5 templates is better than that of MFinit trained
with 5 templates

However, the P@N performance of MFadapt improves over the baseline GPbase system to 0.7545
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Future Scope of Work

Future Work

Multi-modal KWS: Fusion of auditory, visual and articulatory data
for KWS

Robust KWS: KWS systems robust to noisy environment and other
external disturbances

KWS System Combination: Combination of ASR and non-ASR
based KWS techniques
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Future Scope of Work

Thank You!
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